

Membrane-Permeant, Bioactivatable Analogues of cGMP as Inducers of Cell Death in IPC-81 Leukemia Cells

Frank Schwede, ^a Odd T. Brustugun, ^b Michaela Zorn-Kruppa, ^a Stein O. Døskeland ^b and Bernd Jastorff ^{a,*}

^aZentrum für Umweltforschung und -technologie, Abt. Bioorganische Chemie, Universität Bremen, Leobenerstraße, D-28359 Bremen, Germany

^bCell Biology Research Group, Department of Anatomy and Cell Biology, University of Bergen, Årstadveien 19, N-5009 Bergen, Norway

Received 9 November 1999; accepted 24 January 2000

Abstract—We report an improved single-step synthesis to generate the membrane-permeant acetoxymethyl esters (AM-esters) of cGMP and three cGMP-analogues. These bioactivatable compounds were found to induce cell death in rat IPC-81 cells, a model system for acute myelocytic leukemia, in micromolar doses, while the corresponding non-modified cGMP-analogues were inactive. © 2000 Elsevier Science Ltd. All rights reserved.

Guanosine 3',5'-cyclic monophosphate (cGMP) is a key second messenger, mediating physiological effects in most mammalian cells. It acts through the regulation of several distinct receptor proteins, including cyclic nucleotide-gated ion channels, cGMP-regulated phosphodiesterases, and cGMP-dependent protein kinases.¹ Mainly due to its polar ionic structure, cGMP is not able to penetrate intact cellular membranes, a severe problem for experiments with living cells. To overcome this problem cGMP-analogues with hydrophobic substituents have been synthesized and widely used to elucidate the functional role of the cGMP signal cascade in biological systems, like relaxation of smooth muscle, Cl⁻ secretion from intestinal epithelium, and inhibition of platelet aggregation.²⁻⁴ However, the biological potency of cGMP is often decreased by substituents. Poor membrane permeability still remains a major limitation of the usefulness of 8-bromo-cGMP and similar derivatives. Therefore, millimolar concentrations of the compounds in the extracellular medium are often necessary to produce cellular effects.^{3–5}

Schultz et al. successfully designed a new generation of bioactivatable cyclic nucleotides with strongly enhanced membrane permeability, by masking the negative phosphate with an acetoxymethyl ester (AM-ester) group, including N^6 , O^2 -dibutyryl-cAMP/AM, cGMP/AM,

and N^2 , $O^{2'}$ -dibutyryl-cGMP/AM.^{6,7} More recently, this synthetic method was extended to 8-substituted derivatives of cAMP by Kruppa et al., employing an approach which allowed direct alkylation of the unprotected sodium salts.⁸ We adapted and modified the latter method to convert cGMP and three cGMP-analogues into their corresponding AM-esters.

The acetoxymethyl esters (1–4) were applied extracellularly to IPC-81 cells, a cell line considered as a rat model for human acute myelocytic leukemia, and their potency to induce cell death was compared to cGMP and the non-alkylated cGMP-derivatives, respectively.

Results and Discussion

Synthesis

Initial AM-ester preparations were carried out in dimethylformamide (DMF) as an aprotic, dipolar solvent, following the procedure of Kruppa et al. Some cGMP-analogues showed insufficient solubility in DMF and the formation of several products after 1 h reaction time, as was verified by high-performance liquid chromatography (HPLC). By-product formation appeared to be the main limitation of this procedure. Solubility problems were prevented by a 1:1 (v:v) mixture of DMF with dimethylsulfoxide (DMSO). Successful regioselective alkylation of the cyclic phosphate by addition of five equivalents of acetoxymethyl bromide (AM-Br) and

^{*}Corresponding author. Tel.: +49-421-218-7646; fax: +49-421-218-7645; e-mail: jastorff@uni-bremen.de

diisopropylethylamine (DIEA) was now possible within 5–15 min. The progress of AM-ester formation was controlled in minute intervals by HPLC, and the reactions were stopped by shock freezing before significant amounts of side products where detectable. With this new single-step procedure the cyclic nucleotide AM-esters cGMP/AM (1), 8-Br-cGMP/AM (2), 8-pCPT-cGMP/AM (3), and 1-CH₃-cGMP/AM (4) (Fig. 1) were obtained in overall yields of 17% (1) to 22% (4) in purities higher than 98% after isolation by semi-preparative HPLC.

Cell viability studies

Potent cAMP-analogues or other stimuli that elevate intracellular cAMP levels induce apoptotic cell death in IPC-81 cells, by activation of the cAMP-dependent protein kinase type I.⁹ Given the fact that the participation of cGMP as a second messenger in the modulation of apoptosis is of growing interest, ^{10,11} we tested cGMP/AM (1), 8-Br-cGMP/AM (2), cGMP, and 8-Br-cGMP as initiators of cell death on IPC-81 cells. Figure 2A and B illustrates the cell viabilities monitored by MTT-assays¹² 24 h after extracellular application of the compounds. cGMP/AM and 8-Br-cGMP/AM (2) induced cell death with EC₅₀-values in the mid micromolar range (40 and 80 μM, respectively), while cGMP

Figure 1. Chemical structures of cGMP/AM (1), 8-bromo-cGMP/AM (8-Br-cGMP/AM) (2), 8-p-chlorophenylthio-cGMP/AM (8-p-CPT-cGMP/AM) (3), and 1-methyl-cGMP/AM (1-CH₃-cGMP/AM) (4); (only the $R_{\rm P}$ -diastereomers are shown).

120-100-100-80-80-40-0-1 100 1000 1000 concentration [µM] and 8-Br-cGMP were completely inactive even in millimolar doses. Preliminary experiments suggested that 8-pCPT-cGMP/AM (3) and 1-CH₃-cGMP/AM (4) were active in similar or slightly higher concentrations, respectively (data not shown). We conclude that only the AM-esters 1 and 2 but not the non-modified charged compounds cGMP and 8-Br-cGMP are of sufficient hydrophobicity to penetrate the cell membranes. After cleavage of the AM-ester group by endogenous esterases the two resulting cyclic nucleotides, cGMP and 8-Br-cGMP caused cell death in this leukemia cell line.

Our results provide first hints for a role of cGMP and cGMP receptor proteins as death-signals in IPC-81 cells. Further work will be needed to explore the molecular basis of cGMP/AM-analogue action and the nature of induced cell death (apoptotic or necrotic) in this cell line.

Materials and Methods

DMF, DMSO, and DIEA were purchased in the highest purity available and stored over activated molecular sieves (3 Å). AM-Br was from Aldrich, cGMP, 8-*p*CPT-cGMP, and 8-Br-cGMP were from BIOLOG Life Science Institute, Bremen. 1-CH₃-cGMP was synthesized as described before. ¹³ NMR spectra were recorded on a Bruker WH-360 spectrometer in DMSO-*d*₆, mass spectra were performed on a Finnigan MAT Model 8222, with FAB ionisation and glycerol as matrix.

General synthetic procedure

One hundred micromoles of cyclic nucleotide was dissolved in 1 mL dry solvent (DMF:DMSO, 1:1, v:v) under argon protection. Five hundred micromoles DIEA and 500 µmol AM-Br were added, the reaction mixture was kept for 5–15 min at room temperature. The reaction was stopped by shock-freezing in liquid nitrogen. All volatile components were removed in vacuum. Purification of the AM-esters was performed on a semi-preparative HPLC column (Merck LiChrosorb® RP 18, 10 µm, 250×10 mm). The structure of each AM-ester

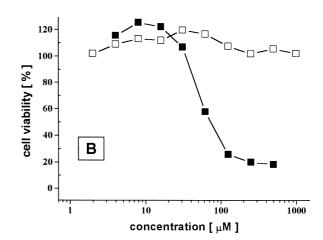


Figure 2. Dose–response curve profiles of IPC-81 cell viability: data were aquired 24 h after extracellular addition of the compounds. (A) cGMP [−○−] and cGMP/AM (1) [−●−], (B) 8-Br-cGMP [−□−] and 8-Br-cGMP/AM (2) [−■−].

(1–4) was confirmed by NMR and MS spectroscopy. In all cases both diastereomers of the acetoxymethyl esters (R_p and S_p) were produced in similar amounts.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Ja 246/6) and by the Fonds der Chemischen Industrie.

References

Francis, S. H.; Corbin, J. D. Adv. Pharmacol. 1994, 26, 115.
 Sekhar, K. R.; Hatchett, R. J.; Shabb, J. B.; Wolfe, L.; Francis, S. H.; Wells, J. N.; Jastorff, B.; Butt, E.; Chakinala, M. M.; Corbin, J. D. Mol. Pharmacol. 1992, 42, 103.
 Lin, M.; MacLeod, K.; Guggino, S. Cell. Physiol. Biochem. 1995, 5, 23.

- Butt, E.; Nolte, C.; Schulz, S.; Beltman, J.; Beavo, J. A.; Jastorff, B.; Walter, U. *Biochem. Pharmacol.* 1992, 43, 2591.
 Li, Y.; Maher, P.; Schubert, D. *J. Cell. Biol.* 1997, 139, 1317.
- 6. Schultz, C.; Vajanaphanich, M.; Harootunian, A. T.; Sammak, P. J.; Barrett, K. E.; Tsien, R. Y. J. Biol. Chem. 1993, 268, 6316.
- 7. Schultz, C.; Makings, L.; and Tsien, R. Y. unpublished results.
- 8. Kruppa, J.; Keely, S.; Schwede, F.; Schultz, C.; Barrett, K. E.; Jastorff, B. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 945.
- 9. Lanotte, M.; Riviere, J. B.; Hermouet, S.; Houge, G.; Vintermyr, O. K.; Gjertsen, B. T.; Døskeland, S. O. *J. Cell. Physiol.* **1991**, *146*, 73.
- 10. Wu, C.-F.; Bishopric, N. H.; Pratt, R. E. J. Biol. Chem. 1997, 272, 14860.
- 11. Kim, Y.-M.; Talanian, R. V.; Billiar, T. R. J. Biol. Chem. **1997**, *272*, 31138.
- 12. Mosmann, T. J. Immunol. Meth. 1983, 65, 55.
- 13. Genieser, H.-G.; Butt, E.; Bottin, U.; Dostmann, W.; Jastorff, B. Synthesis 1989, 1, 53.